Universidad de Costa Rica Departamento de Ciencias de la Atmósfera FS0737 Tópicos de Ciencias de la Atmósfera (Introducción a las Ciencias Atmosféricas)

Carta al estudiante Profesor: Gabriela Mora Rojas gabriela.morarojas@ucr.ac.cr

Créditos: 3 Requisitos: NA

Horario: Martes, 10:00 am – 1 pm, 3 horas por semana.

Consulta: Martes, 2 – 4 pm, CIGEFI.

Descripción:

El curso de Introducción a las Ciencias Atmosféricas está orientado a estudiantes de Meteorología y Física para ayudar a familiarizarse con los temas generales que abarca la carrera de Meteorología, de manera que sirva como introducción mientras completa sus cursos de servicio, y como transición al curso de Dinámica de Fluidos.

Metodología:

El curso se desarrollará mediante exposiciones de la materia por parte del profesor, con la oportunidad de los estudiantes de interactuar, comentar y discutir temas de interés en cualquier momento oportuno. Contrario a las clases magistrales, se pretende que el curso sea de índole participativo e informativo, bajo la supervisión y guía del profesor.

Objetivos:

General 1

Categorizar las aéreas abarcadas en el estudio de la Meteorología y su desarrollo en el país.

Específicos

- Distinguir los conceptos y fenómenos que estudia la Meteorología.
- Mencionar aspectos básicos del desarrollo de la Meteorología en Costa Rica.
- Identificar las funciones del Meteorólogo en el campo laboral.
- Sintetizar aspectos básicos históricos del desarrollo de instrumentos meteorológicos.

General 2

Identificar las distintas capas y composición de la atmósfera.

Específicos

- Conceptuar las características básicas de las capas atmosféricas.
- Estudiar las diferentes escalas atmosféricas y sus algunos fenómenos típicos de estas escalas
- Comparar el origen y forma de las nubes encontradas en la atmósfera.

General 3

Analizar la interacción entre distintos fenómenos mesoescalares

Específicos

- Introducir teóricamente aspectos básicos de la correlación de algunas variables atmosféricas entre sí.
- Comprender el concepto e importancia de las teleconexiones atmosféricas.
- Considerar el papel de la variabilidad climática en la predicción del tiempo y clima.

General 4

Representar matemáticamente la dinámica atmosférica.

Específicos

- Interpretar las principales ecuaciones de movimiento de un fluido.
- Demostrar el papel que cumple la rotación terrestre en el movimiento de un fluido.
- Descomponer el movimiento de un fluido en rotación y traslación para estudiar los conceptos de divergencia y vorticidad.
- Identificar algunos tipos de ondas atmosféricas y el papel que cumplen en la dinámica de la atmósfera.

Evaluación:

Debido a la naturaleza introductoria de este curso, la evaluación se enfocará más en la comprensión teórica e integral de los procesos atmosféricos y la meteorología.

- Actividades individuales: 70%
 - Tareas: 20%
 - Trabajo escrito y presentación corta de artículos científicos asignados: 30%
 - Participación e informe de laboratorio de fluidos: 20%.
- Actividades grupales: trabajo escrito y su presentación oral: 30%
 - 15% trabajo escrito
 - 15% presentación oral

Bibliografía de referencia:

Holton, J., 2004: An Introduction to Dynamic Meteorology. Academic Press, Fourth Edition.

Kundu, P., Cohen, I., Dowling, D., 2011: Fluid Mechanics. Academic Press, Fifth Edition.

Wallace, J., Hobbs, P., 2006: Atmospheric Science: An Introductory Survey. Academic Press, Second Edition

Módulos virtuales de COMET/METED

Temario y cronograma, 2018 – I:

 Historia de la meteorología. Origen de la meteorología como ciencia Impulsores de la meteorología en Costa Rica Mercado laboral 	(Semana 1) (12–16 Marzo)
 2. Instrumentos meteorológicos. 2.1 Historia de los instrumentos meteorológicos 2.2 Red de detección de rayos 2.3 Satélites meteorológicos 	(Semana 2) (19–23 Marzo)
Semana Santa	(Semana 3) (26–30 Marzo)
 3. Introducción a la atmósfera. 3.1 Capas de la atmósfera 3.2 Escalas atmosféricas 3.3 Balance energético global y superficial de radiación y humedad 3.4 Tipos de nubes 3.5 Tormentas eléctricas y rayos 	(Semana 4–6) (2–20 Abril)
 4. Patrones de circulación atmosférica y clima. 4.1 Circulación del viento en los trópicos 4.2 Fenómenos de variabilidad climática: ENOS, MJO 	(Semana 7– 9) (23 Abril–11 Mayo)
5. Capa límite planetaria.5.1 Capa mezclada5.2 Capa superficial5.3 Capa residual5.4 Capa estable	(Semana 10–11) (14–25 Mayo)
 6. Dinámica atmosférica. 6.1 Ecuaciones básicas de movimiento 6.2 Efectos de la rotación terrestre: plano beta, plano f. 6.3 Vorticidad 	(Semana 12–14) (28 Mayo–15 Junio)
7. Ondas planetarias. 7.1 Ondas gravitacionales 7.2 Ondas de Kelvin 7.3 Ondas de Rossby	(Semana 15–16) (18–29 Junio)
Entrega y presentación de trabajos finales	(Semana 17) (2–6 Julio)